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1. Introduction

The big success of the Standard Model of elementary particle physics is based to a large

extent on precision calculations which sometimes reach three-, four- and even five-loop

accuracy. Such calculations currently all rely on Dimensional Regularization (DREG) [1, 2]

which is an elegant and powerful tool to parametrize the divergences occurring at interme-

diate steps of the calculations.

In DREG, the number of space-time dimensions is altered from four to D = 4 − 2ε,

which renders the loop integrations finite. It is clear, however, that if DREG is applied to a

4-dimensional supersymmetric theory, the number of bosonic and fermionic degrees of free-

dom in super-multiplets is no longer equal, such that supersymmetry (SUSY) is explicitly

broken. In order to avoid this problem, Dimensional Reduction (DRED) has been suggested

as an alternative regularization method [3]. Space-time is compactified to D = 4 − 2ε di-

mensions in DRED, such that the number of vector field components remains equal to four.

Momentum integrations are D-dimensional, however, and divergences are parametrized in

terms of 1/ε poles, just like in DREG. Since it is assumed that ε > 0, the four-dimensional

vector fields can be decomposed in terms of D-dimensional ones plus so-called ε-scalars.

The occurrence of these ε-scalars is therefore the only difference between DREG and DRED,

so that all the calculational techniques developed for DREG are applicable also in DRED.

Nevertheless, it soon was realized that DRED suffers from mathematical inconsisten-

cies in its original formulation [4]. Currently, it seems that they can only be avoided by

interpreting the fields as living in an infinite dimensional space, which again leads to ex-

plicit SUSY breaking [5, 6]. A higher order calculation will therefore require similar SUSY

restoring counter terms as they are needed in DREG in general. For some of the currently

available two-loop results, however, it has been shown that these counter terms vanish [7].

Although DRED was originally constructed for applications in supersymmetric models,

it has been shown that in certain cases it can be useful also in non-supersymmetric theo-

ries [8 – 10] like QCD. For example, since it is possible to turn QCD (with massless quarks)
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into a super-Yang-Mills theory by simply adjusting the colour factors, a calculation using

DRED provides the possibility to use non-trivial Ward identities for a check of complicated

calculations (see, e.g., ref. [11]).

As mentioned before, DRED parametrizes ultra-violet divergences as poles in ε. One

can therefore formulate a renormalization scheme analogous to the MS scheme, usually

called the DR scheme. In this paper, we compute the beta function of the strong cou-

pling and the anomalous dimension of the quark masses to three-loop accuracy within this

scheme. An important issue turns out to be the renormalization of the qq̄ε vertex. It re-

quires to introduce a new, so-called evanescent coupling constant αe. A similar argument

holds for the four-ε-scalar vertex, but at the order considered here, this vertex does not get

renormalized. The proper treatment of αe leads us to conclude that the three-loop result

for the QCD β function available in the literature [12] is incorrect. The correct result is

provided in section 3.

The outline of the paper is as follows. In section 2 we provide the notation and set

the general framework for the calculation. Subsequently, we describe in sections 3 and 4

the calculation for the β and the γm function up to three loops. Section 5 contains the

conclusions.

2. Framework

We consider QCD and apply Dimensional Reduction (DRED) as the regularization scheme.

Thus, besides the usual QCD Feynman rules for quarks (q) and gluons (g), we have to

consider additional vertices involving the so-called ε-scalars, namely qq̄ε, gεε, ggεε, εεεε

(for the corresponding Lagrange density, see, e.g., refs. [13, 14]). In general, also a mass

term for the ε-scalar has to be taken into account [15, 16]. However, on simple dimensional

grounds it affects neither the QCD β-function nor the anomalous dimension of the quark

mass, so we do not need to consider it here.

In a non-supersymmetric theory, it is important to note that the qq̄ε and the qq̄g

vertices renormalize differently. Therefore, one needs to distinguish the coupling constant

ge, multiplying the qq̄ε vertex, from the strong coupling gs [8]. Also the εεεε vertex

renormalizes differently; in fact, in QCD one needs to allow for a more general colour

structure of this vertex, leading to three additional coupling constants λr (r = 1, 2, 3). In

order to fix the notation we display the relevant part of the Lagrange density [8]

L = . . . − 1

4

3
∑

r=1

λrH
abcd
r εa

σεc
σ′εb

σεd
σ′ + · · · , (2.1)

where ε denotes the ε-scalar fields, and σ and σ′ are 2ε-dimensional indices. For the SU(3)

gauge group, the Habcd
r are three independent rank four tensors which are symmetric under

the interchange of (ab) and (cd). Our choice

Habcd
1 =

1

2

(

facef bde + fadef bce
)

,

Habcd
2 = δabδcd + δacδbd + δadδbc ,
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Habcd
3 =

1

2

(

δacδbd + δadδbc
)

− δabδcd , (2.2)

fixes the Feynman rules in a unique way. Note that for SU(Nc), Nc > 3, there are four

independent tensors Habcd
r . At the order considered in this paper no renormalization con-

stant for the εεεε vertex has to be introduced. The vertices gεε and ggεε, on the other

hand, are renormalized according to gs because of gauge invariance [8].

ge and λr will be called “evanescent couplings” in what follows, and we define

αs =
g2
s

4π
, αe =

g2
e

4π
and ηr =

λr

4π
. (2.3)

The renormalization constants for the couplings gs and ge, the quark mass m, the QCD

gauge parameter ξ, as well as for the fields and the vertices are introduced as

g0
s = µεZsgs , g0

e = µεZege , m0 = mZm ,

1 − ξ0 = (1 − ξ)Z3 , q0 =
√

Z2 q , G0,a
µ =

√

Z3 Ga
µ ,

ε0,a
σ =

√

Zε
3 εa

σ , c0,a =

√

Z̃3 ca , c̄0,a =

√

Z̃3 c̄a ,

Γ0
qq̄G = Z1Γqq̄G , Γ0

qq̄ε = Zε
1Γqq̄ε , Γ0

cc̄G = Z̃1Γcc̄G , (2.4)

where µ is the renormalization scale, D = 4 − 2ε is the number of space-time dimensions,

and the bare quantities are marked by the superscript “0”. The quark, gluon, ε-scalar, and

ghost fields are denoted by q, Ga
µ, εa and ca, respectively, and Γxyz stands for the vertex

functions involving the particles x, y and z (a is the colour index.). The gauge parameter

ξ is defined through the gluon propagator,

Dµν
g (q) = −i

gµν − ξ qµqν

q2

q2 + iε
. (2.5)

From the renormalization of the ghost-gluon or quark-gluon vertex one obtains the

renormalization constant of the strong coupling

Zs =
Z̃1

Z̃3

√
Z3

=
Z1

Z2

√
Z3

. (2.6)

Similarly, the quark–ε-scalar vertex leads to the relation

Ze =
Zε

1

Z2

√

Zε
3

. (2.7)

It is well-known that Zs 6= Ze even at one-loop order. Furthermore, both Zs and Ze

depend on gs, ge, and λr [8]; note, however, that Zs depends on ge and λr only starting

from three- and four-loop order, respectively, while Ze depends on ge and λr already at

one- and two-loop order, respectively.

Let us next introduce the β functions both for DREG and DRED. In DREG, of course,

the ε-scalars are absent, and from the definition

βMS(αMS
s ) = µ2 d

dµ2

αMS
s

π
(2.8)
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the usual relation between βMS and Zs is obtained:

βMS(αMS
s ) = −ε

αMS
s

π

(

1 + 2αMS
s

∂ ln ZMS
s

∂αMS
s

)−1

, (2.9)

where ZMS
s denotes Zs evaluated in the MS scheme, and αMS

s is the usual definition of the

strong coupling within this scheme [17]. βMS is known to four-loop order (see refs. [18, 19]

and references therein). Due to the fact that we have five different couplings in DRED,

the relations between Zs and Ze and the corresponding beta functions are slightly more

involved. They are given by

βDR
s (αDR

s , αe, {ηr}) = µ2 d

dµ2

αDR
s

π

= −
(

ε
αDR

s

π
+ 2

αDR
s

ZDR
s

∂ZDR
s

∂αe
βe + 2

αDR
s

ZDR
s

∑

r

∂ZDR
s

∂ηr
βηr

)(

1 + 2
αDR

s

ZDR
s

∂ZDR
s

∂αDR
s

)−1

,

βe(α
DR
s , αe, {ηr}) = µ2 d

dµ2

αe

π

= −
(

ε
αe

π
+ 2

αe

Ze

∂Ze

∂αDR
s

βDR
s + 2

αe

Ze

∑

r

∂Ze

∂ηr
βηr

)

(

1 + 2
αe

Ze

∂Ze

∂αe

)−1

, (2.10)

where it is understood that the renormalization constants Ze and ZDR
s in eq. (2.10) are

evaluated within DRED with (modified) minimal subtraction, and αDR
s is the corresponding

strong coupling constant in this scheme. As in the MS scheme, the coefficients of the single

poles fully determine the β functions. Let us remark that the terms proportional to βηr
,

the beta functions corresponding to the couplings ηr, contribute to βDR
s only at the four-

loop order. Furthermore, only the approximation βηr
= −εηr

π is needed for the two-loop

calculation of βe.

In analogy to eqs. (2.9) and (2.10) we introduce the anomalous mass dimensions which

are given by

γMS
m (αMS

s ) =
µ2

mMS

d

dµ2
mMS = −πβMS∂ ln ZMS

m

∂αMS
s

,

γDR
m (αDR

s , αe, {ηr}) =
µ2

mDR

d

dµ2
mDR

= −πβDR
s

∂ ln ZDR
m

∂αDR
s

− πβe
∂ ln ZDR

m

∂αe
− π

∑

r

βηr

∂ ln ZDR
m

∂ηr
. (2.11)

As in the case of the β function, γDR
m also gets additional terms due to the dependence of

Zm on the evanescent coupling ge and on the quartic ε-scalar couplings λr . The four-loop

result for γMS
m can be found in refs. [20, 21].

Let us add a few remarks concerning the meaning of the evanescent coupling αe at

this point. In a non-supersymmetric theory, αe can be set to an arbitrary value α̂e at an

arbitrary, fixed scale µ̂, αe(µ̂) ≡ α̂e. This corresponds to a choice of scheme and in turn

– 4 –
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determines the value of αDR
s through, say, an experimental measurement. At any scale µ,

both αDR
s and αe are then determined by the renormalization group equations (2.10). One

particular scheme choice would be to set αe(µ̂) = αDR
s (µ̂). Note, however, that already at

one-loop level one will have αe(µ) 6= αDR
s (µ) for any µ 6= µ̂ due to the difference in the

renormalization group functions βs and βe.

In a supersymmetric theory, on the other hand, one necessarily has βDR
s = βe and

αDR
s = αe at all scales. Thus, if one assumes that QCD is a low energy effective theory

of SUSY-QCD, αe is no longer a free parameter. Rather, αe and αDR
s are both related

to the unique SUSY-QCD gauge coupling by matching relations (see, e.g., ref. [22]) and

renormalization group equations.

These considerations show that the choice αe = αDR
s is not compatible with the renor-

malization group evolution of these couplings unless all SUSY particles are taken into

account in the running. In fact, it cannot be assumed at any scale as soon as one or more

SUSY particles are integrated out. An example where this is relevant already at one-loop

level is the mDR ↔ mMS relation as will be pointed out in connection with eq. (4.4) below.

An analogous discussion holds also for the evanescent couplings ηr.

3. β function to three-loop order

Within the framework of DRED outlined in the previous section we have computed Z1,

Z2, Z3, Z̃1 and Z̃3 to three-loop order. They are obtained from the two- and three-

point functions according to eq. (2.4) (see, e.g., ref. [23] for explicit formulae). Thus,

according to eq. (2.6), Zs is computed in two different ways and complete agreement is

found. Furthermore, we compute Zε
1 and Zε

3 to two-loop order and hence obtain Ze to the

same approximation.

Since only the divergent parts enter the renormalization constants, we can set all

particle masses to zero and choose one proper external momentum in order to avoid infrared

problems. For the generation of the about 11,000 diagrams we use QGRAF [24] and process

the diagrams with q2e and exp [25, 26] in order to map them to MINCER [27] which can

compute massless one-, two- and three-loop propagator-type diagrams.

The n-loop calculation leads to counter terms for gs, ge, and the gauge parameter

ξ, which are then inserted into the (n + 1)-loop calculation in order to subtract the sub-

divergences. We remark that ε-scalars are treated just like physical particles in this proce-

dure.

For the β function, to a large extent it is possible to avoid the calculation with ε-scalars

and evaluate the Feynman diagrams by applying only slight modifications as compared to

DREG. For that, after the projectors have been applied and the traces have been taken in

D = 4−2ε dimensions, one sets ε = 0. The evaluation of the momentum integrals, however,

proceeds in D dimensions, just as for DREG. During the calculation it is necessary to keep

track of the qq̄g vertices since the difference between DREG and DRED in the results of

the corresponding diagrams effectively accounts for the contributions from the qq̄ε vertex.

Thus, the renormalization constant Ze has to be used for this contribution.

– 5 –
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We refrain from listing explicit results for Zs but instead present the results obtained

from eq. (2.10). Although βe is only needed to one-loop order for the three-loop calculation

of βDR
s we present the two-loop expression which enters the three-loop calculation of γDR

m .

Writing

βDR
s (αDR

s , αe, {ηr}) = −ε
αDR

s

π
−

∑

i,j,k,l,m

βDR
ijklm

(

αDR
s

π

)i
(αe

π

)j (η1

π

)k (η2

π

)l (η3

π

)m
,

βe(α
DR
s , αe, {ηr}) = −ε

αe

π
−

∑

i,j,k,l,m

βe
ijklm

(

αDR
s

π

)i
(αe

π

)j (η1

π

)k (η2

π

)l (η3

π

)m
,

(3.1)

we find for the non-vanishing coefficients up to three respectively two loops:

βDR
20 =

11

12
CA − 1

3
Tnf ,

βDR
30 =

17

24
C2

A − 5

12
CATnf − 1

4
CF Tnf ,

βDR
40 =

3115

3456
C3

A − 1439

1728
C2

ATnf − 193

576
CACF Tnf

+
1

32
C2

F Tnf +
79

864
CAT 2n2

f +
11

144
CF T 2n2

f ,

βDR
31 = − 3

16
C2

F Tnf ,

βDR
22 = −CF Tnf

(

1

16
CA − 1

8
CF − 1

16
Tnf

)

,

βe
02 = −CF − 1

2
Tnf +

1

2
CA ,

βe
11 =

3

2
CF ,

βe
03 =

3

8
C2

A − 5

4
CACF + C2

F − 3

8
CATnf +

3

4
CF Tnf ,

βe
21 = − 7

64
C2

A +
55

48
CACF +

3

16
C2

F +
1

8
CATnf − 5

12
CF Tnf ,

βe
12 = −3

8
C2

A +
5

2
CACF − 11

4
C2

F − 5

8
CF Tnf ,

βe
02100 = −9

8
, βe

02010 =
5

4
, βe

02001 =
3

4
, βe

01200 =
27

64
,

βe
01101 = − 9

16
, βe

01020 = −15

4
, βe

01002 =
21

32
, (3.2)

where

CF =
N2

c − 1

2Nc
, CA = Nc , T =

1

2
(3.3)

are the usual colour factors of QCD, and nf is the number of active quark flavours. In

eq. (3.1) we introduced five indices for the coefficients of βDR
s and βe. However, we drop

the last three indices whenever there is no dependence on ηr. In particular, βs depends

– 6 –
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on the ηr only starting from four-loop order. Note that those terms involving ηr are only

valid for Nc = 3, whereas the remaining ones hold for a general SU(Nc) group.

As a first check on the results given in eq. (3.2), we specialize them to the supersym-

metric Yang-Mills theory containing one Majorana fermion in the adjoint representation,

by setting CA = CF = 2T , nf = 1, and αDR
s = αe = η1 and η2 = η3 = 0. Accordingly, we

obtain for the non-vanishing coefficients of the βDR
s

βDR
20 =

3

4
CA , βDR

30 =
3

8
C2

A , βDR
40 =

21

64
C3

A , (3.4)

in agreement with ref. [28]. Moreover, comparing these coefficients for pure QCD with the

literature, one finds that the two-loop result for βDR
s and the one-loop result for βe agree

with ref. [8]. Actually, up to this order, the result for the first two perturbative coefficients

of βs is the same in the DR and the MS scheme which is a well-known consequence of

mass-independent renormalization schemes. However, our three-loop result for βDR
s differs

in the terms proportional to C2
F Tnf , CACF Tnf and CF T 2n2

f from the one that can be

found in ref. [12].

In order to explain this difference, let us have a closer look at the method used in

ref. [12]. The function βDR
s was derived from the known result for βMS

s by inserting the

relation between αDR
s and αMS

s . The couplings αe and αDR
s , as well as their β-functions

βe and βDR
s were identified throughout the calculation. But as we will show shortly, this

identification makes it impossible to obtain consistent higher order results. Keeping the

couplings different, on the other hand, the relation between αDR
s and αMS

s reads

αDR
s = αMS

s



1 +
αMS

s

π

CA

12
+

(

αMS
s

π

)2
11

72
C2

A − αMS
s

π

αe

π

1

8
CF Tnf + · · ·



 , (3.5)

where the dots denote higher orders in αMS
s , αe, and ηr. We obtained this relation by

noting that the value of αs in a physical renormalization scheme should not depend on the

regularization procedure:

αph
s =

(

zph,X
s

)2

αX
s , zph,X

s = ZX
s /Zph,X

s , X ∈ {MS,DR}

⇒ αDR
s =

(

Zph,DR
s ZMS

s

Zph,MS
s ZDR

s

)2

αMS
s ,

(3.6)

where Z
MS/DR
s are the charge renormalization constants using minimal subtraction in

DREG/DRED, as defined above. For Z
ph,MS/DR
s , on the other hand, we use DREG/DRED

combined with a physical renormalization condition. We observe that the ratio in eq. (3.6)

is momentum independent, such that the calculation amounts to keeping the constant fi-

nite pieces in the charge renormalization constants Z
ph,MS/DR
s . Note that the various Zs

in eq. (3.6) depend on differently renormalized αs, so that the equations have to be used

iteratively at higher orders of perturbation theory.

– 7 –
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Equation (3.5) has to be inserted into

βDR
s (αDR

s , αe, {ηr}) = µ2 d

dµ2

αDR
s

π

= βMS
s (αMS

s )
∂αDR

s

∂αMS
s

+ βe(α
DR
s , αe, {ηr})

∂αDR
s

∂αe
+ · · · , (3.7)

where the first equality is due to the definition of βDR
s and the second one is a consequence

of the chain rule, with terms arising through the ηr represented by dots. Using the three-

loop expression for βMS
s (see refs. [18, 19] and references therein), we obtain the same

result as in eq. (3.2) which not only provides a powerful check on the various steps of the

calculation, but also confirms the equivalence of DREG and DRED at this order [29].

Let us stress that even if one sets αe = αDR
s in the final result (cf. eq. (3.2)), one does

not arrive at the expression for βDR
s provided in ref. [12].

Indeed, a way to see that the identification of αDR
s and αe at intermediate steps leads

to inconsistent results is as follows. Whereas in the case of the β function the error is a

finite, gauge parameter independent term, it leads to a much more obvious problem for the

quark mass renormalization: Zm will contain non-local terms at three-loop order if ge = gs

is assumed throughout the calculation, and γm as evaluated from eq. (2.11) will not be

finite.

4. Mass anomalous dimension to three loops

In this section we use the framework of section 2 in order to obtain the anomalous dimension

of the quark masses within DRED as defined in eq. (2.11). The result will be derived both

by a direct calculation of the relevant Feynman diagrams in DRED, as well as indirectly

by using the result from DREG and the MS–DR relation between the strong coupling and

quark mass.

The evaluation of Zm to three-loop order proceeds along the same lines as for the

renormalization constants of the previous section. However, in contrast to Zs, the coupling

αe already appears at one-loop order. Thus the two-loop expression for Ze is required

which can be obtained from eq. (3.2). At one-loop order we find complete agreement with

the result given in ref. [8]; the two-loop term is — to our knowledge — new.

From the three-loop result for Zm we obtain the anomalous dimension

γDR
m (αDR

s , αe, {ηr}) = −
∑

i,j,k,l,m

γDR
ijklm

(

αDR
s

π

)i
(αe

π

)j (η1

π

)k (η2

π

)l (η3

π

)m
, (4.1)

with

γDR
10 =

3

4
CF ,

γDR
20 =

3

32
C2

F +
91

96
CACF − 5

24
CF Tnf ,

γDR
11 = −3

8
C2

F ,
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γDR
02 =

1

4
C2

F − 1

8
CACF +

1

8
CF Tnf ,

γDR
30 =

129

128
C3

F − 133

256
C2

F CA +
10255

6912
CF C2

A +
−23 + 24ζ3

32
C2

F Tnf

−
(

281

864
+

3

4
ζ3

)

CACF Tnf − 35

432
CF T 2n2

f ,

γDR
21 = −27

64
C3

F − 21

32
C2

F CA − 15

256
CF C2

A +
9

32
C2

F Tnf ,

γDR
12 =

9

8
C3

F − 21

32
C2

F CA +
3

64
CF C2

A +
3

64
CACF Tnf +

3

8
C2

F Tnf ,

γDR
03 = −3

8
C3

F +
3

8
C2

F CA − 3

32
CF C2

A +
1

8
CACF Tnf − 5

16
C2

F Tnf − 1

32
CF T 2n2

f ,

γDR
02100 =

3

8
, γDR

02010 = − 5

12
, γDR

02001 = −1

4
, γDR

01200 = − 9

64
,

γDR
01020 =

5

4
, γDR

01101 =
3

16
, γDR

01002 = − 7

32
. (4.2)

Again the last three indices are suppressed whenever there is no dependence on ηr. Fur-

thermore, those terms involving ηr are only valid for Nc = 3, whereas the remaining ones

hold for a general SU(Nc) group.

On the other hand, γDR
m can be derived indirectly from the MS result obtained within

DREG. The analogous equation to (3.7) is given by

γDR
m (αDR

s , αe, {ηr}) = γMS
m

∂ ln mDR

∂ ln mMS
+

πβMS
s

mDR

∂mDR

∂αMS
s

+
πβe

mDR

∂mDR

∂αe
+ · · · , (4.3)

which requires the two-loop relation between mDR and mMS in order to obtain γDR
m to three

loops. The two-loop relation between mDR and mMS can be computed in close analogy to

eq. (3.6) by keeping not only the divergent but also the finite parts in the calculation of

the fermion propagator. Our result reads

mDR = mMS

[

1 − αe

π

1

4
CF +

(

αMS
s

π

)2
11

192
CACF − αMS

s

π

αe

π

(

1

4
C2

F +
3

32
CACF

)

+
(αe

π

)2
(

3

32
C2

F +
1

32
CF Tnf

)

+ · · ·
]

, (4.4)

where the dots denote higher orders in αMS
s , αe, and ηr. The one- and two-loop terms of

eq. (4.4) agree with ref. [30] in the limit αe = αDR
s . Let us remark that in order to get

eq. (4.4), also the one-loop relation between the DR and MS version of the gauge parameter

is a necessary ingredient unless one works in Landau gauge (ξ = 1). We performed the

calculation for general covariant gauge and use the cancellation of the gauge parameter in

the final result as a welcome check.

As a further ingredient we need γMS
m which can be found in refs. [20, 21]. Inserting

this result and eq. (4.4) into (4.3) leads to eq. (4.2). Again, this is a powerful check on our

calculation and shows the equivalence of DRED and DREG at this order. Note that in the

indirect approach the ηr enter only through the factor βe in eq. (4.3).

– 9 –
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The two-loop result of γDR
m can also be found in ref. [30] and we agree for αe = αs.

The three-loop result for γDR
m is new.

The distinction between αs and αe in eq. (4.4) is essential for phenomenological analy-

ses as can be seen from the following numerical example. Assuming a supersymmetric the-

ory and integrating out the SUSY particles at µ = MZ , we may use αDR
s (MZ) = αe(MZ) =

0.120 as input, and then evolve αe and αDR
s separately to lower scales by using eqs. (2.10),

(3.1), and (3.2). For µb = 4.2 GeV, we arrive at1 αDR
s (µb) = 0.218 and αe(µb) = 0.167, for

example. Using mMS
b (µb) = 4.2 GeV, eq. (4.4) then leads to mDR

b (µb) = 4.12 GeV. If one

wrongly identifies αe with αDR
s in eq. (4.4), one obtains a value for mDR

b (µb) which is roughly

30 MeV smaller than that. Note that this difference is of the same order of magnitude than

the current uncertainty on the b-quark mass determination (see, e.g., ref. [31]).

Note that the identification αe = αs has also been made in eq. (26) of ref. [32] for

µ = MZ (see also ref. [33]), which incorporates our eq. (4.4) for nf = 5. This induces an

inconsistency of order α2
s(MZ), whose numerical effect is quite small.

5. Conclusions

In many cases, DRED poses an attractive alternative to DREG — not only for supersymmet-

ric theories. We computed the QCD renormalization group function of the strong coupling

constant (β) and of the quark masses (γm) to three-loop order in this scheme using two

different methods. The agreement of the results obtained in both ways confirms the equiv-

alence of the DR and the MS renormalization scheme at this order, in the sense that they

are related by an analytic redefinition of the couplings and masses [29]. Furthermore, we

find that the three-loop β-function found in the literature differs from ours. We trace this

difference to the fact that the evanescent coupling of the qq̄ε vertex had been identified

wrongly with αs in ref. [12].

Let us stress that higher order calculations within the framework of DRED should also

be useful in the context of the Minimal Supersymmetric Standard Model where precision

calculations will be important in order to be prepared for measurements at the CERN

Large Hadron Collider and other future high energy experiments.
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